Ultrashort X-ray Pulse Generation by Electron Beam Slicing in NSLS-II

Reporter: An He

Accelerator Physics Group, Photon Science Directorate, BNL

at Jlab Accelerator Division Seminar, 3/19/2015

outline

- 1, Introduction
- 2, Theory of electron beam slicing
- 3, Start to end design of this system
 - Simulation design of low energy compressor
 - Slice profile and radiation separation
 - Photon flux and repetition rate

Basic idea and characteristics

	Laser slicing	Crab cavity	X-ray FEL	Ebeam slicing
Source	Storage ring	Storage ring	FEL	Storage ring
Occupied ring space	large	large	large	?
Pulse length	~ 100 fs	~ ps	< 100 fs	?
Photon flux	~ 10 ⁶ photons/sec/0.1%bw	~ 10 ¹⁴ photons/sec/0.1%bw	~ 10 ¹² photons/sec/0.1%bw	?
Repetition rate	1 kHz	100 MHz	Low (120Hz for LCLS)	?
Pulse to pulse stability	good	good	poor	?

Office of

C

U.S. DEPARTMENT OF ENERGY

ence

Basic Idea:

when a short electron bunch from a low energy linac passes above a storage ring bunch at a right angle, its Coulomb force will kick a short slice from the core of the storage ring bunch vertically.

The separated slice, when passing through an undulator, will radiate ultrashort x-ray pulse.

(Lihua Yu & Ferdinand Willeke)

Scheme of e-beam slicing

- **1.** Analytical analysis of e-beam slicing (two bunches' interaction).
- **2.** LINAC design, space charge dominated bunch compressor.
- **3.** Choose interaction point at the storage ring.
- **4.** Separate synchrotron radiations of the satellite from the core.
- **5.** Photon flux and repetition rate of this e-beam slicing system.

Vertical angular kick function

Kick profile and estimated slice width

$$f(\rho,\overline{u}_1,\overline{y}_1) = \int_0^\infty Re[W(\overline{u}_1 + iy)][e^{-(\rho y - \overline{y}_1)^2} - e^{-(\rho y + \overline{y}_1)^2}]dy$$

Estimated kick angle for NSLS-II

$$\Delta \theta_y(\varphi = 90^\circ) = \frac{eq_2 Z_0 c}{2\pi E_1} \frac{\gamma_2}{\sqrt{\gamma_2^2 + 1}} \frac{1}{\sqrt{2}\sigma_y} f(\rho, \overline{u}_1, \overline{y}_1)$$

NSLS-II bunch $\beta_x = 3.8 \text{ m}$, $\beta_y = 25 \text{ m}$, $\varepsilon_y = 10 \text{ pm}$, $\sigma'_y = 0.6 \mu \text{rad}$, $E_1 = 3 \text{ GeV}$ linac bunch $E_2 = 20 \text{ MeV}$, $q_2 = 200 \text{ pC}$, $\sigma_z = \sigma_y = \sigma_x = 35 \mu \text{m}$ **nominal kick angle**

$$\Delta \theta_{y,0} = \frac{eq_2 Z_0 c}{2\pi E_1} \frac{\gamma_2}{\sqrt{\gamma_2^2 + 1}} \frac{1}{\sqrt{2}\sigma_y} = 24 \ \mu \text{rad}$$

profile function (assume $d = \sqrt{2}\sigma_y = 50 \ \mu \text{m}, \ x_r = y_r = z_r = 0$)

$$f_{\max}(\rho = 1.4, \bar{y}_1 = 1, \bar{u}_1 = 0) = 0.54$$

kick angle

DEPARTMENT OF ENERGY

 $\Delta \theta_y = \Delta \theta_{y,0} \times f_{\text{max}} = 24 \ \mu \text{rad} \times 0.54 = 13 \ \mu \text{rad}$ much larger than required $5\sigma'_y = 3 \ \mu \text{rad}$

We need short and small (high current), low energy bunch with high charge

 $\begin{aligned} \sigma_x &= \sigma_y = \sigma_z = 35 \ \mu\text{m} \\ E_2 &= 5 \ \text{MeV}, \ q_2 &= 50 \ \text{pC} \Longrightarrow \Delta \theta_y = 3.2 \ \mu\text{rad}, \ \text{x-ray} \ 150 \ \text{fs} \\ E_2 &= 20 \ \text{MeV}, \ q_2 = 200 \ \text{pC} \Longrightarrow \Delta \theta_y = 13 \ \mu\text{rad}, \ \text{x-ray} \ 150 \ \text{fs} \end{aligned}$ Office of

Conventional bunch compressor

 \succ Difficulty:

Space charge effects are very strong for low energy, high charge bunch.

Conventional solution:

first accelerate bunch to high energy, then compress

> But, we need a low cost (low energy) LINAC compressor

Unconventional low energy bunch compressor

- Try to compress bunch without acceleration or with a short accelerating structure after RF-gun
- > Work at low energy (5 MeV~22MeV), space charge dominated regime
- > Bunch with **negative energy chirp** (head particle with higher energy)
- Compression section with positive R₅₆

designed two compressors (length<10m):</p>

Gun	Optimized performances	Code	Optimizer
BNL RF gun	~ 5 MeV, 50 pC, 166fs, 31um, 28um	OptiM, ELEGANT,	Genetic
(1~10 Hz)	(1.27ps, 2mm, 2mm at cathode)	PARMELA	algorithm
LBNL VHF gun	~ 22 MeV, 200 pC, 128 fs, 42 um, 25 um	IMPACT-T,	Genetic
(at 186 MHz)	(8ps, 1.5mm, 1.5mm at cathode)	IMPACT-Z	algorithm

Using focus to increase energy chirp

Chicane requirement 1: $\sigma_1 \approx \sqrt{(1+hR_{56})^2 \sigma_0^2 + R_{56}^2 \sigma_\delta^2}$ $R_{56} = R_{56, \text{chicane}} + R_{56, \text{drift space}} = -s/\gamma^2$						
R_{56} =	= -1/h					
Chirp at cathode -0.25%/ps (1/h=-120mm)	Chirp after focusing: -1.5%/ps (1/h=-20mm)					
R _{56,chicane} =170mm	R _{56, chicane} = 70mm					
Large R ₅₆ -> longer compressed bunch length	Small R ₅₆ -> shorter compressed bunch length					
$ \underbrace{\begin{smallmatrix} 1.50\\0.75\\-0.75\\-0.75\\-1.50\\-1.50\\-1.50\\-1.50\\\Delta t(ps) \end{smallmatrix} } small negative chirp at the downstream of BNL RF-gun $	$\begin{bmatrix} 1.50 \\ 0.75 \\ 0.00 \\ -0.75 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ \Delta t(ps) \end{bmatrix}$ large negative chirp just at the upstream of chicane					
Chicane requirement 2: (100fs final bunch length as a target) beta functions < 10m_dispersion function < 12cm_R < 84mm						

energy chirp | >1% / ps

- Space charge effects generate negative chirp---head particles has higher energy than tail's
- Focus the beam to increase space charge effects, then to increase the chirp

Positive R₅₆ chicane

Redefine beta function and dispersion function in space charge dominated regime

- > Turn on space charge: beta function and dispersion function loss meaning; 3-D blow up;
- ➢ Redefine:

DEPARTMENT OF ENERGY

equivalent **beta functions** using RMS beam size in **selected initial emittance ranges** equivalent **dispersion** by averaging the trajectory in **selected initial energy ranges**

- Gradually increase charge and adjust quads to restore "dispersion function" and "beta function" to the same as the case without space charge
- > 30 pC without blowing up, without losing particles (~ 700 fs)

12

BROOKHAVEN SCIENCE ASSOCIATES

Global optimization using genetic algorithm

- Solution Variables: laser pulse length, laser phase, solenoid strength, field strengths of magnets, etc.
- **Optimized objects**: bunch length, sum of transverse RMS beam sizes.
- Constrains: survival particle number

Thanks Dr. Lingyun Yang for the optimizer

- Set the limits of variables to reduce parameter scanning phase space.
- Iterate the optimization by using new range from last results.
- Sradually increase charge from 30 pC to 50 pC.
- Result: at 5MeV, 50pC, ~7m compressor ----> 1.27ps, 2mm, 2mm to 166 fs, 28 μm, 31 μm.

Benchmark and CSR effects

Why design another compressor?

Thanks Dr. Ji Qiang for his generous guidance on the application of IMPACT-T & IMPACT-Z

High repetition rate: BNL RF-gun (1~10Hz) -> LBNL VHF RF-gun (186MHz)

CSR (coherent synchrotron radiation) effects: PARMELA -> IMPACT-T

bench mark the results between code PARMELA and IMPACT-T

- Verify our simulation results:
 - Benchmark results between IMPACT-T and PAMELA for our linac compressor.
 - -> simulation results of two codes agree well
 - Compare the simulation results when CSR effects turning on with that when turning off in IMPACT-T.
 - -> the CSR effects comparison shows that the bunch can be compressed and focused

TABLE III. The benchmark results of PARMELA against
IMPACT-T and the comparison of CSR turning off with CSR
turning on in IMPACT-T. We take the optimized 12 MeV, 150 pC
bunch compressor of case 3 in Table II as an example to do the
benchmark and comparison.

	Code	CSR effects	σ_L^a [fs]	$\sigma_H^{\ a} \ [\mu m]$	$\sigma_V^{\ a} \ [\mu m]$
0	PARMELA IMPACT-T	Off Off	145 137	35 45	24 32
I.S. DEPART	IMPACT-T	On	157	43	26

Low energy bunch compressor with VHF gun

- Change gun into LBNL's VHF gun (operated at 186MHz with 1MHz repetition rate), add two 1.3 GHz TESLA-like superconducting cavities.
- Match beta functions with those at the upstream of chicane at 13 MeV
- to increase bunch's charge and energy

to scaling increase the strength of chicane magnets

global optimization procedure using genetic algorithm

Case	Charge [pC]	Energy [MeV]	σ_L^{a} [fs]	$\sigma_{H^{\mathfrak{b}}}\left[\mu\mathrm{m}\right]$	σ_V° [μ m]
1	150	18	130	47	28
2	200	20	148	46	25
3	200	22	128	42	25

TABLE I. Performances of the compressor.

Optimized results of the two compressors

TABLE II. Examples of the optimized results for the two low energy compressor.

compressor		with BNL gun	L	with LBNL VHF gun		
		(6.77 m long)		(8.74 m long)		
bunch performance		initial	$focused^{a}$	initial	$\rm focused^{a}$	compressed ratio
		bunch	bunch	bunch	bunch	compressed ratio
longitudinal bunch length [fs]		$1270^{\rm b}$	166°	6783^{d}	$128^{\rm c}$	26
horizontal beam size $[\mu m]$	(2000^{b}	31 ^c) ($1994^{\rm d}$	$42^{\rm c}$	
vertical beam size $[\mu m]$		2000^{b}	28 ^c	$1971^{\rm d}$	$25^{\rm c}$	41
energy spread [%]	$\Delta E/E$	0.09°	0.93	$0.0014^{\circ}/0.98^{f}$	1.38	79
average kinetic energy $[MeV]$	\mathbf{E}	4.69 ^e	4.69	$0.73^{\rm e}/22^{\rm f}$	22	
horizontal emittance $[\mu m]$	ε_x	0.177^{e}	1.02	$59^{ m e}/0.143^{ m f}$	0.71	
vertical emittance $[\mu m]$	ε_y	0.189^{e}	0.84	$58.5^{\rm e}/0.142^{\rm f}$	0.19	
charge [pC]	Q	50	50	200	200	

 $^{\rm a}$ be calculated for 90% of particles, with 10% tails cut off.

^b at cathode: longitudinal distribution is Gaussian with $2\sigma_z=1.27$ ps; transverdistribution is uniform with the same radius of 2 mm.

^c RMS value

^d at cathode: longitudinal distribution is flat-top with linear ramp at two ends total length from head to tail is 6.78 ps; transverse distribution is uniform ell with hard cut edge, the diameter of the ellipse in x and y is 1.99 mm.

^e at gun exit

^f after RF acceleration

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 18, 014201 (2015)

Design of low energy bunch compressors with space charge effects

A. He, F. Willeke, L. H. Yu, L. Yang, T. Shaftan, G. Wang, Y. Li, and Y. Hidaka Photon Sciences Division, Brookhaven National Laboratory (BNL), Upton, New York 11973, USA

J. Qiang

Accelerator and Fusion Research Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, California 94720, USA (Received 15 August 2014; published 7 January 2015)

Kick point in NSLS-II lattice

Choose maximum β_y to maximize the angular separation of the slice from the core
 Choose minimum β_x to minimize the slice bunch length

point A: $\Delta \phi_A = 125^{\circ}, \ \beta_y = 25 \text{ m}, \ \beta_x = 3.8 \text{ m}$ point B: $\Delta \phi_B = 88^{\circ}, \ \beta_y = 25 \text{ m}, \ \beta_x = 3.8 \text{ m}$

Slice profile at kicker and radiator

Calculate slice profile:

Using 6D distribution at final focus point from our designed compressor as the simulated linac bunch

code: ELEGANT (to track the transport of phase space distribution)

> particle number: 10,000 for low energy linac bunch

100,000 for high energy storage ring bunch

Reducing crossing angle to reduce slice pulse length

Beam line design for radiation separation

- Angular + spatial hybrid separation Pure spatial separation
- Code: SRW (synchrotron radiation workshop)

Thanks Dr. Oleg Chubar for his generous guidance on the use of SRW and the separation calculation.

A. He, O. Chubar, L.H. Yu. Separation of hard X-ray synchrotron radiation from electron beam slices. to be submitted in *Proc. SPIE* (2014).

TABLE III. Separation performances of hard x-ray synchrotron radiation from electron beam slices. Data are recorded at 7.8 KeV on the observation screen.

Crossing angle	Separate type	Flux/pulseª [photons/0.1%bw]	Flux⁵ [photons/ sec /0.1%bw]	Peak intensity [photons/ sec /0.1%bw/mm ²	SNR	Pulse length [fs]	1
90°	Spatial + angular Spatial	$\begin{array}{c} 10\times10^3\\ 18\times10^3 \end{array}$	$\begin{array}{c} 10\times10^8\\ 18\times10^8 \end{array}$	2.1×10^{10} 6.5×10^{10}	12 5	320 320	
45°	Spatial + angular Spatial	$\begin{array}{c} 5\times10^3\\ 5\times10^3\end{array}$	$\begin{array}{c} 5\times10^8\\ 5\times10^8\end{array}$	1.1×10^{10} 3.6×10^{10}	8° (2.6) 8° (2.7)	150 150	

^aAssume NSLS-II's revolution time is about 2.6 μ s, then flux/pulse = power × 2.6 μ s. ^bAssume the repetition rate of the low energy linac is 100 kHz, then flux = flux/pulse × 100 kHz. ^cWith 10 ps of the detector's time resolution.

The last issue

Photon flux

Estimated photon flux

U20: 10^{15} photons/sec/0.1%BW (8 keV, 500mA) ring: current 500 mA, 1000 bunches; revolution time: 2.6 μ s slice fraction: 0.3 ps/30 ps

single pulse photon flux: $10^{15} \times 0.3 \text{ ps}/30 \text{ ps} \times 2.6 \mu \text{s}/1000$ $= 2.6 \times 10^4 \text{ photons}/0.1\% \text{BW}$

> Simulation results of photon flux (code: SRW)

 TABLE III.
 Separation performances of hard x-ray synchrotron radiation from electron beam slices. Data are recorded at 7.8 KeV on the observation screen.

Crossing	g	Flux/pulseª	Flux ^b	Peak intensity	SNR	Pulse length
angle	Separate type	[photons/0.1%bw	[photons/ sec /0.1%bw]	[photons/ sec /0.1%bw/mm ²]		[fs]
90° 45°	Spatial + angular Spatial Spatial + angular Spatial	$10 \times 10^{3} \\ 18 \times 10^{3} \\ 5 \times 10^{3} \\ 5 \times 10^{3} \\ 5 \times 10^{3}$	10×10^{8} 18×10^{8} 5×10^{8} 5×10^{8}	$\begin{array}{c} 2.1 \times 10^{10} \\ 6.5 \times 10^{10} \\ 1.1 \times 10^{10} \\ 3.6 \times 10^{10} \end{array} $	12 5 3° (2.6) 3° (2.7)	320 320 150 150

22

^aAssume NSLS-II's revolution time is about 2.6 μ s, then flux/pulse = power × 2.6 μ s.

^bAssume the repetition rate of the low energy linac is 100 kHz, then $flux = flux/pulse \times 100$ kHz.

^cWith 10 ps of the detector's time resolution.

Emittance increase and repetition rate

Estimated emittance increase for a single bunch

- 1) induced by one time angular kick: $0.3 \text{ ps}/30 \text{ ps} \times 5^2 \times 1/2\varepsilon_y = 12\%\varepsilon_y$ (assume $5\sigma'_y$ kick with a slice of 300 fs/ 30 ps)
- 2) due to the damping time in storage ring: $12\%\varepsilon_y \times \text{damping time (10 ms)}$
- 3) if a single bunch is kicked with 100 Hz repetition rate: $12\%\varepsilon_y \times 10 \text{ ms} \times 100 \text{ Hz} \neq 12\%\varepsilon_y$

Distribute the kicks uniformly over all 1000 bunches

Repetition rate 100 kHz, photon flux ~10⁹ [photons/sec/0.1%bw]

Repetition rate limit 100 kHz ~ 1MHz, depending on tolerance of the vertical emittance increase

Summary

Ultrashort x-ray pulse generation by electron beam slicing in storage rings

A. He, F. Willeke, and L. H. Yu

Photon Sciences Directorate, Brookhaven National Laboratory, Upton, New York 11973, USA (Received 20 August 2013; published 4 April 2014)

	Laser slicing	Crab cavity	X-ray FEL	Ebeam slicing
source	Storage ring	Storage ring	FEL	Storage ring
Occupied ring space	large	large	large	small
Pulse length	~ 100 fs	~ ps	< 100 fs	~150 fs
Photon flux	~ 10 ⁶ photons/sec/0.1%bw	~ 10 ¹⁴ photons/sec/0.1%bw	~ 10 ¹² photons/sec/0.1%bw	~ 10 ¹⁰ photons/sec/0.1%bw
Repetition rate	1 kHz	100 MHz	Low (120Hz for LCLS)	1 MHz
Pulse to pulse stability	good	good	poor	
Pulse length Photon flux Repetition rate Pulse to pulse stability	~ 100 fs ~ 10 ⁶ photons/sec/0.1%bw 1 kHz good	~ ps ~ 10 ¹⁴ photons/sec/0.1%bw 100 MHz good	< 100 fs ~ 10 ¹² photons/sec/0.1%bw Low (120Hz for LCLS) poor	~150 fs ~ 10 ¹⁰ photons/sec/0.1%k 1 MHz good

Publications:

BOOK:

 [1] A. He, L. Yang, L.H. Yu. Introduction to High-Gain FEL Theory.
 (the 1st chapter of book "Synchrotron Light Sources and Free-Electron Lasers", edited by Eberhard Jaeschke, Shaukat Khan et al., in Springer (2014)).

JOURNAL:

[2] A. He, F. Willeke, L.H. Yu, J. Qiang et al., Phys. Rev. ST Accel. Beams 18, 014201(2015).
[3] A. He, F. Willeke, L.H. Yu. Phys. Rev. ST Accel. Beams 17, 120704 (2014).
[4] A. He, F. Willeke, L.H. Yu. Phys. Rev. ST Accel. Beams 17, 040701 (2014).

25

CONFERENCE:

[5] A. He, O. Chubar, L.H. Yu. Proc. SPIE (2014).
[6] A. He, J. Qiang, F. Willeke, L. Yang, L.H. Yu. FEL14 (2014).
[7] A. He, F. Willeke, L.H. Yu. FEL14 (2014).
[8] A. He, Y. Hidaka, T. Shaftan et al., IPAC13 (2013).

Acknowledgment

Dr. Li-hua Yu, Dr. Ferdinand Willeke

Dr. Ji Qiang (APEX RF-gun, IMPACT-T, IMPACT-Z)

- Dr. Oleg Tchoubar (SRW)
- Dr. Simone Di Mitri (CSR)

All my colleagues of accelerator physics group, NSLSII, BNL

Thanks all !

